Π² ΡΠ΅ΠΌ ΠΈΠ·ΠΌΠ΅ΡΡΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠΈΠ³ΡΡΡ
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ°
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ β ΡΡΠΎ ΡΡΠΌΠΌΠ° Π΄Π»ΠΈΠ½ Π²ΡΠ΅Ρ ΡΡΠΎΡΠΎΠ½ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
ΠΠ°ΠΊΠΎΠΉ Π±ΡΠΊΠ²ΠΎΠΉ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ? ΠΠ°Π³Π»Π°Π²Π½ΠΎΠΉ Π»Π°ΡΠΈΠ½ΡΠΊΠΎΠΉ P. ΠΠΎΠ΄ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ P ΡΠ΄ΠΎΠ±Π½ΠΎ ΠΏΠΈΡΠ°ΡΡ ΠΌΠ°Π»Π΅Π½ΡΠΊΠΈΠΌΠΈ Π±ΡΠΊΠ²Π°ΠΌΠΈ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ ΡΠΈΠ³ΡΡΡ, ΡΡΠΎΠ±Ρ Π½Π΅ Π·Π°ΠΏΡΡΠ°ΡΡΡΡ Π² Π·Π°Π΄Π°ΡΠ°Ρ ΠΏΠΎ Ρ ΠΎΠ΄Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
Π ΡΠ΅ΠΌ ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ? Π ΡΠ΅Ρ ΠΆΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡΠ°Ρ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ, ΡΡΠΎ ΠΈ Π΄Π»ΠΈΠ½Π° β Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅ΡΡ, ΡΠ°Π½ΡΠΈΠΌΠ΅ΡΡ, ΠΌΠ΅ΡΡ, ΡΡΡ, Π΄ΡΠΉΠΌ, Π»ΠΎΠΊΠΎΡΡ ΠΈ Π΄Ρ.
ΠΡΠ»ΠΈ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ Π·Π°Π΄Π°ΡΠΊΠΈ Π΄Π»ΠΈΠ½Ρ ΡΡΠΎΡΠΎΠ½ ΠΏΠ΅ΡΠ΅Π΄Π°Π½Ρ Π² ΡΠ°Π·Π½ΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ°Ρ Π΄Π»ΠΈΠ½Ρ, ΠΌΡ Π½Π΅ ΡΠΌΠΎΠΆΠ΅ΠΌ ΡΠ·Π½Π°ΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠΈΠ³ΡΡΡ. ΠΠ»Ρ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½ΡΠΆΠ½ΠΎ ΠΏΠ΅ΡΠ΅Π²Π΅ΡΡΠΈ Π²ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ Π² ΠΎΠ΄Π½Ρ Π΅Π΄ΠΈΠ½ΠΈΡΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ.
Π€ΠΎΡΠΌΡΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ°
ΠΠ°ΠΊ ΠΌΡ ΡΠΎΠ»ΡΠΊΠΎ ΡΡΠΎ ΡΠ·Π½Π°Π»ΠΈ, ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ β ΡΡΠΎ ΡΡΠΌΠΌΠ° Π΄Π»ΠΈΠ½ Π²ΡΠ΅Ρ ΡΡΠΎΡΠΎΠ½ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°. Π Π·Π½Π°ΡΠΈΡ, ΡΡΠΎΠ±Ρ Π΅Π³ΠΎ Π½Π°ΠΉΡΠΈ, Π½Π°ΠΌ Π½Π°Π΄ΠΎ Π·Π½Π°ΡΡ Π΄Π»ΠΈΠ½Ρ ΡΡΠΈΡ ΡΡΠΎΡΠΎΠ½. ΠΠ°Π²Π°ΠΉΡΠ΅ ΠΏΠΎΡΠΌΠΎΡΡΠΈΠΌ, ΠΊΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ, Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ°Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ ΡΠΈΠ³ΡΡ.
Π Π°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½ΠΈΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ
Π£ ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅Π³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° Π²ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π²Π½Ρ. Π Π·Π½Π°ΡΠΈΡ, ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅Π³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΊΠ°ΠΊ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ ΡΡΠΎΡΠΎΠ½Ρ Π½Π° ΠΈΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ, Ρ. Π΅. Π½Π° 3.
P = 3 β a, Π³Π΄Π΅ a β Π΄Π»ΠΈΠ½Π° ΡΡΠΎΡΠΎΠ½Ρ.
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ Π»ΡΠ±ΠΎΠ³ΠΎ Π΄ΡΡΠ³ΠΎΠ³ΠΎ ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅Π³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠ΅ΠΌ ΠΆΠ΅ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ: ΡΠΌΠ½ΠΎΠΆΠΈΠ² Π΄Π»ΠΈΠ½Ρ Π΅Π³ΠΎ ΡΡΠΎΡΠΎΠ½Ρ Π½Π° ΠΈΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ° ΠΈ ΡΠΎΠΌΠ±Π° Π²ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π²Π½Ρ, Π° Π·Π½Π°ΡΠΈΡ, ΠΈΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ P = 4 β a, Π³Π΄Π΅ a β Π΄Π»ΠΈΠ½Π° ΡΡΠΎΡΠΎΠ½Ρ.
Π ΡΠΎΡΠΌΡΠ»Π° Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅Π³ΠΎ n-ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° Π±ΡΠ΄Π΅Ρ ΡΠ°ΠΊΠ°Ρ: P = n β a, Π³Π΄Π΅ a β Π΄Π»ΠΈΠ½Π° ΡΡΠΎΡΠΎΠ½Ρ, n β ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΡΠΎΡΠΎΠ½.
ΠΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌ
Π£ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π²Π½Ρ, Π° Π·Π½Π°ΡΠΈΡ, Π½Π°ΠΉΡΠΈ ΠΈΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ Π»Π΅Π³ΠΊΠΎ, Π·Π½Π°Ρ Π΄Π²Π΅ ΡΠΎΡΠ΅Π΄Π½ΠΈΠ΅ ΡΡΠΎΡΠΎΠ½Ρ.
P = 2 β (a + b), Π³Π΄Π΅ a β ΠΎΠ΄Π½Π° ΡΡΠΎΡΠΎΠ½Π°, b β ΡΠΎΡΠ΅Π΄Π½ΡΡ ΡΡΠΎΡΠΎΠ½Π°.
ΠΠΊΡΡΠΆΠ½ΠΎΡΡΡ
Π£ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Π½Π΅Ρ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ°, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ ΡΡΠΎ Π½Π΅ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ. ΠΠΎ Ρ Π½Π΅Π΅ Π΅ΡΡΡ Π΄Π»ΠΈΠ½Π°, ΠΊΠΎΡΠΎΡΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ, Π·Π½Π°Ρ ΡΠ°Π΄ΠΈΡΡ. ΠΠ»ΠΈΠ½Π° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ β ΡΡΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΠΈ Π½Π° Π΄Π²Π° ΡΠ°Π΄ΠΈΡΡΠ° ΠΈΠ»ΠΈ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΠΈ Π½Π° Π΄ΠΈΠ°ΠΌΠ΅ΡΡ.
L = d β Ο = 2 β r β Ο, Π³Π΄Π΅ d β Π΄ΠΈΠ°ΠΌΠ΅ΡΡ, r β ΡΠ°Π΄ΠΈΡΡ, Ο β ΡΡΠΎ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠ°, ΠΊΠΎΡΠΎΡΠ°Ρ Π²ΡΡΠ°ΠΆΠ°Π΅Ρ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΊ Π΄ΠΈΠ°ΠΌΠ΅ΡΡΡ, ΠΎΠ½Π° ΠΏΡΠΈΠ±Π»ΠΈΠ·ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ°Π²Π½Π° 3,14.
ΠΠΎΠΆΠ½ΠΎ Π²ΡΡΡΠΈΡΡ Π²ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ, Π° ΠΌΠΎΠΆΠ½ΠΎ, Π·Π°ΠΏΠΎΠΌΠ½ΠΈΠ² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎ ΡΡΠΌΠΌΠ΅ Π²ΡΠ΅Ρ ΡΡΠΎΡΠΎΠ½, ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ°Π· ΠΏΡΠΎΡΠ²Π»ΡΡΡ ΡΠΌΠ΅ΠΊΠ°Π»ΠΊΡ ΠΈ Π²ΡΡΠΈΡΠ»ΡΡΡ ΡΠ°ΠΌΠΎΡΡΠΎΡΡΠ΅Π»ΡΠ½ΠΎ. ΠΠ°Π²Π°ΠΉΡΠ΅ ΠΏΠΎΡΡΠ΅Π½ΠΈΡΡΠ΅ΠΌΡΡ, ΠΊΠ°ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠΈΠ³ΡΡ!
Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ
Π Π°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ 40 ΡΠΌ, Π΄Π»ΠΈΠ½Π° Π΅Π³ΠΎ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 6 ΡΠΌ. ΠΠ°ΠΊΡΡ Π΄Π»ΠΈΠ½Ρ Π±ΡΠ΄ΡΡ ΠΈΠΌΠ΅ΡΡ Π΄Π²Π΅ Π΄ΡΡΠ³ΠΈΠ΅ ΡΡΠΎΡΠΎΠ½Ρ?
ΠΡΠ²Π΅Ρ: Π΄Π²Π΅ Π΄ΡΡΠ³ΠΈΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π²Π½Ρ ΠΏΠΎ 17 ΡΠΌ.
Π Π°Π΄ΠΈΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΠ°Π²Π΅Π½ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΡ ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅Π³ΠΎ ΠΏΡΡΠΈΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠΎ ΡΡΠΎΡΠΎΠ½ΠΎΠΉ 4 ΡΠΌ. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π΄Π»ΠΈΠ½Ρ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ.
ΠΡΠ΅ Π±ΠΎΠ»ΡΡΠ΅ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΡ Π·Π°Π΄Π°Π½ΠΈΠΉ β Π½Π° ΠΊΡΡΡΠ°Ρ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π² ΠΎΠ½Π»Π°ΠΉΠ½-ΡΠΊΠΎΠ»Π΅ Skysmart!
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΠ³ΡΡΡ
Π Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡΠ±Π»ΠΈΠΊΠ°ΡΠΈΠΈ ΠΌΡ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ, ΡΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΠ³ΡΡΡ, ΠΊΠ°ΠΊ ΠΎΠ½ ΡΡΠΈΡΠ°Π΅ΡΡΡ, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ°Π·Π±Π΅ΡΠ΅ΠΌ ΠΏΡΠΈΠΌΠ΅ΡΡ Π΄Π»Ρ Π΄Π΅ΠΌΠΎΠ½ΡΡΡΠ°ΡΠΈΠΈ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ Π·Π½Π°Π½ΠΈΠΉ.
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ°
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ β ΡΡΠΎ ΡΡΠΌΠΌΠ° Π΄Π»ΠΈΠ½ Π²ΡΠ΅Ρ ΡΡΠΎΡΠΎΠ½ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΠ³ΡΡΡ (ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, ΠΊΠ²Π°Π΄ΡΠ°ΡΠ°, ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ, ΡΠΎΠΌΠ±Π° ΠΈ Ρ.Π΄.).
ΠΠ»Ρ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΡ Π΄Π»ΠΈΠ½Ρ: ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅ΡΡΡ (ΠΌΠΌ), ΡΠ°Π½ΡΠΈΠΌΠ΅ΡΡΡ (ΡΠΌ), ΠΌΠ΅ΡΡΡ (ΠΌ), ΠΊΠΈΠ»ΠΎΠΌΠ΅ΡΡΡ (ΠΊΠΌ) ΠΈ Ρ.Π΄.
ΠΠ±ΡΠ΅ΠΏΡΠΈΠ½ΡΡΠΎΠ΅ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° β ΡΡΠΎ Π»Π°ΡΠΈΠ½ΡΠΊΠ°Ρ Π±ΡΠΊΠ²Π° βPβ, ΠΏΠΎΠ΄ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π΄ΠΎΠ±Π°Π²ΠΈΡΡ ΡΠΎΠΊΡΠ°ΡΠ΅Π½Π½ΠΎΠ΅ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ ΡΠΈΠ³ΡΡΡ ΠΈΠ»ΠΈ Π΅Π΅ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΠ΅. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ:
Π€ΠΎΡΠΌΡΠ»Ρ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½Π½ΡΡ ΡΠΈΠ³ΡΡ
Π€ΠΈΠ³ΡΡΠ° | ΠΠ°Π·Π²Π°Π½ΠΈΠ΅ | ΠΠΎΡΡΠ½Π΅Π½ΠΈΠ΅ | ||||
» data-order=» | ΠΠ²Π°Π΄ΡΠ°Ρ | » data-order=» | ΠΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ | » data-order=» | Π’ΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ | PΠΊΠ²Π°Π΄Ρ. = 5 + 5 + 5 + 5 = 4 β 5 = 20 ΡΠΌ. ΠΡΠΈΠΌΠ΅Ρ 2 PΠΏΡΡΠΌΠΎΡΠ³. = 6 + 8 + 6 + 8 = (6 + 8) β 2 = 28 ΡΠΌ. ΠΡΠΈΠΌΠ΅Ρ 3 P = AB + BC + CD + DE + EH + HA = 5 + 3 + 5 + 4 + 6 + 5 = 28. Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΈ ΠΏΠ»ΠΎΡΠ°Π΄ΡΠΠ΅ΡΠΈΠΌΠ΅ΡΡ β ΡΡΠΎ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ΅ΡΠΌΠΈΠ½, ΠΊΠΎΡΠΎΡΡΠΉ ΡΠ°ΡΡΠΎ Π²ΡΡΡΠ΅ΡΠ°Π΅ΡΡΡ Π² Π·Π°Π΄Π°ΡΠ°Ρ . Π§ΡΠΎΠ±Ρ ΠΏΠΎΠ½ΡΡΡ, ΡΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ, ΡΠ»Π΅Π΄ΡΠ΅Ρ Π½Π°ΡΠΈΡΠΎΠ²Π°ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΡΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ ΠΈ Π²ΠΎΠΎΡΡΠΆΠΈΡΡΡΡ Π»ΠΈΠ½Π΅ΠΉΠΊΠΎΠΉ. Π ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π΅ Ρ Π³ΡΠ΅ΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ° ΡΡΠΎΡ ΡΠ΅ΡΠΌΠΈΠ½ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ Β«ΠΈΠ·ΠΌΠ΅ΡΡΡ Π²ΠΎΠΊΡΡΠ³Β». ΠΠ°ΠΊ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ Π»Π°ΡΠΈΠ½ΡΠΊΠΎΠΉ Π±ΡΠΊΠ²ΠΎΠΉ P. ΠΠ³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ·ΠΌΠ΅ΡΠΈΡΡ Π² ΡΠ°Π½ΡΠΈΠΌΠ΅ΡΡΠ°Ρ , ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅ΡΡΠ°Ρ , ΠΌΠ΅ΡΡΠ°Ρ ΠΈΠ»ΠΈ Π΄Π΅ΡΠΈΠΌΠ΅ΡΡΠ°Ρ . Π§ΡΠΎΠ±Ρ ΡΠ·Π½Π°ΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ, ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΈΠ·ΠΌΠ΅ΡΠΈΡΡ Π΄Π»ΠΈΠ½Ρ Π²ΡΠ΅Ρ ΡΡΠΎΡΠΎΠ½ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π½ΡΠΆΠ½ΠΎ ΡΠ»ΠΎΠΆΠΈΡΡ. ΠΡΠΎΠ³ΠΎΠ²Π°Ρ ΡΡΠΌΠΌΠ° ΠΈ ΡΡΠ°Π½Π΅Ρ ΠΎΡΠ²Π΅ΡΠΎΠΌ Π½Π° Π²ΠΎΠΏΡΠΎΡ: Β«Π§Π΅ΠΌΡ ΡΠ°Π²Π΅Π½ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°Β». ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ β ΡΡΠΎ Π΄Π»ΠΈΠ½Π° Π»ΠΈΠ½ΠΈΠΉ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΠ³ΡΠ°Π½ΠΈΡΠΈΠ²Π°ΡΡ Π·Π°ΠΌΠΊΠ½ΡΡΡΡ ΡΠΈΠ³ΡΡΡ (ΠΊΠ²Π°Π΄ΡΠ°Ρ, ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ, ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ ΠΈ Π΄Ρ.). ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΏΠ΅ΡΠ΅Π΄ Π²Π°ΠΌΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ ΡΠΎ ΡΡΠΎΡΠΎΠ½Π°ΠΌΠΈ 10, 12, 13 ΠΈ 11 ΡΠΌ. Π‘ΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΠΌ Π²ΡΡΠ΅Π½Π°Π·Π²Π°Π½Π½ΡΠ΅ ΡΠΈΡΠ»Π° (10+12+13+11) ΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ ΡΡΠΌΠΌΡ 46. ΠΡΠΎ ΠΈ Π΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°. ΠΠ»Ρ ΡΠ΄ΠΎΠ±ΡΡΠ²Π° Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° Π² Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΡΠ΄ ΡΠΎΡΠΌΡΠ». ΠΠ°ΠΆΠ΄Π°Ρ ΡΠΎΡΠΌΡΠ»Π° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ ΡΠΈΠ³ΡΡΠ΅. ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΈ ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ°ΠΡΠΎ ΡΡΠΌΠΌΠ° Π΅Π³ΠΎ ΡΠ΅ΡΡΡΠ΅Ρ ΡΡΠΎΡΠΎΠ½. ΠΠ°ΠΊ ΠΌΡ Π·Π½Π°Π΅ΠΌ, Π²ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ° ΠΈΠΌΠ΅ΡΡ ΡΠ°Π²Π½ΡΠΉ ΡΠ°Π·ΠΌΠ΅Ρ. ΠΠΎΡΡΠΎΠΌΡ ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ ΡΠ·Π½Π°ΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ°, ΡΠΌΠ½ΠΎΠΆΠΈΠ² Π΄Π»ΠΈΠ½Ρ Π΅Π³ΠΎ ΡΡΠΎΡΠΎΠ½Ρ Π½Π° ΡΠ΅ΡΡΡΠ΅: P= a*4 P= a+a+a+a ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΏΠ΅ΡΠ΅Π΄ Π½Π°ΠΌΠΈ ΠΊΠ²Π°Π΄ΡΠ°Ρ ΡΠΎ ΡΡΠΎΡΠΎΠ½ΠΎΠΉ 10 ΡΠΌ. Π§ΡΠΎΠ±Ρ ΡΠ°Π·ΠΎΠ±ΡΠ°ΡΡΡΡ, ΡΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΈ ΠΏΠ»ΠΎΡΠ°Π΄Ρ, ΡΠ»Π΅Π΄ΡΠ΅Ρ ΡΡΡΠ½ΠΈΡΡ, ΡΡΠΎ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ Π²ΡΡΠΈΡΠ»ΡΠ΅Ρ Π΄Π»ΠΈΠ½Ρ ΠΊΠΎΠ½ΡΡΡΠ° ΡΠΈΠ³ΡΡΡ, Π° ΠΏΠ»ΠΎΡΠ°Π΄Ρ β ΡΠ°Π·ΠΌΠ΅Ρ Π²ΡΠ΅ΠΉ Π΅Π΅ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠΈ. Π§ΡΠΎΠ±Ρ ΡΠ·Π½Π°ΡΡ ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ°, Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΠΏΡΠΎΡΡΠΎΠΉ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ: S= a*a S=a 2 S β ΡΡΠΎ ΠΏΠ»ΠΎΡΠ°Π΄Ρ, Π° β ΡΡΠΎΡΠΎΠ½Π° ΠΊΠ²Π°Π΄ΡΠ°ΡΠ°. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π² Π·Π°Π΄Π°ΡΠ΅ ΡΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π΄Π»ΠΈΠ½Π° ΡΡΠΎΡΠΎΠ½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ° ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 10ΡΠΌ. ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΈ ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°Π‘ΡΠΎΡΠΎΠ½Ρ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, Π½Π°Ρ ΠΎΠ΄ΡΡΠΈΠ΅ΡΡ Π΄ΡΡΠ³ Π½Π°ΠΏΡΠΎΡΠΈΠ² Π΄ΡΡΠ³Π° ΠΈ ΠΈΠΌΠ΅ΡΡΠΈΠ΅ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ Π΄Π»ΠΈΠ½Ρ, Π½Π°Π·ΡΠ²Π°ΡΡΡΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠΈΠΌΠΈ. ΠΡΠΎ Π΄Π»ΠΈΠ½Π° ΠΈ ΡΠΈΡΠΈΠ½Π°, ΠΎΠ½ΠΈ ΡΡΠ»ΠΎΠ²Π½ΠΎ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡΡΡ Π»Π°ΡΠΈΠ½ΡΠΊΠΈΠΌΠΈ Π±ΡΠΊΠ²Π°ΠΌΠΈ a ΠΈ b. Π€ΠΎΡΠΌΡΠ»Π° Π΄Π»Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ: P= (a+b)*2 ΠΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ, ΠΌΡ ΡΠ½Π°ΡΠ°Π»Π° Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ ΡΡΠΌΠΌΡ ΡΠΈΡΠΈΠ½Ρ ΠΈ Π΄Π»ΠΈΠ½Ρ, Π° Π·Π°ΡΠ΅ΠΌ ΡΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ Π΅Π΅ Π½Π° Π΄Π²Π°. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΏΠ΅ΡΠ΅Π΄ Π½Π°ΠΌΠΈ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ, ΠΈΠΌΠ΅ΡΡΠΈΠΉ Π΄Π»ΠΈΠ½Ρ 6 ΡΠΌ ΠΈ ΡΠΈΡΠΈΠ½Ρ 2 ΡΠΌ. Π§ΡΠΎΠ±Ρ ΡΠ·Π½Π°ΡΡ ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, ΡΠ»Π΅Π΄ΡΠ΅Ρ Π΄Π»ΠΈΠ½Ρ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π½Π° ΡΠΈΡΠΈΠ½Ρ. Π€ΠΎΡΠΌΡΠ»Π° Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ: S= a*b ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ Π·Π°Π΄Π°ΡΠΈ ΡΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ ΠΈΠΌΠ΅Π΅Ρ Π΄Π»ΠΈΠ½Ρ 5 ΡΠΌ ΠΈ ΡΠΈΡΠΈΠ½Ρ 2ΡΠΌ. ΠΠ΅Π½ΡΠ΅ΠΌ Π±ΡΠΊΠ²Ρ a ΠΈ b Π½Π° ΡΠΊΠ°Π·Π°Π½Π½ΡΠ΅ ΡΠΈΡΠ»Π°. ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΊΡΡΠ³Π° (Π΄Π»ΠΈΠ½Π° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ)ΠΠ°ΠΆΠ΄ΡΠΉ ΠΊΡΡΠ³ ΠΈΠΌΠ΅Π΅Ρ ΡΠ΅Π½ΡΡ. Π Π°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ ΡΠ΅Π½ΡΡΠ° ΠΊΡΡΠ³Π° Π΄ΠΎ Π»ΡΠ±ΠΎΠΉ ΡΠΎΡΠΊΠΈ, ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ Π½Π° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ, ΠΈΠΌΠ΅Π΅Ρ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ ΡΠ°Π΄ΠΈΡΡ ΠΊΡΡΠ³Π°. Π§Π°ΡΡΠΎ ΡΡΠ΅Π½ΠΈΠΊΠΈ ΠΏΡΡΠ°ΡΡ ΠΏΠΎΠ½ΡΡΠΈΡ Β«ΠΊΡΡΠ³Β» ΠΈ Β«ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡΒ» ΠΈ ΠΏΡΡΠ°ΡΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ. ΠΡΠΎ ΡΠ΅ΡΡΠ΅Π·Π½Π°Ρ ΠΎΡΠΈΠ±ΠΊΠ°. Π‘Π»Π΅Π΄ΡΠ΅Ρ ΡΠ°Π·Π΄Π΅Π»ΠΈΡΡ Π² Π³ΠΎΠ»ΠΎΠ²Π΅ ΠΏΠΎΠ½ΡΡΠΈΡ Β«ΠΊΡΡΠ³Β» ΠΈ Β«ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡΒ». Π£ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Π½Π΅Ρ ΠΈ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ, Ρ Π½Π΅Π΅ Π΅ΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ Π΄Π»ΠΈΠ½Π°. Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΊΡΡΠ³Π°, ΡΠ»Π΅Π΄ΡΠ΅Ρ Π²ΡΡΠΈΡΠ»ΠΈΡΡ Π΄Π»ΠΈΠ½Ρ Π΅Π³ΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ. Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠΎΡΠΌΡΠ»Π° Π΄Π»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π΄Π»ΠΈΠ½Ρ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ: L = 2Οr L= 2Οd L β Π΄Π»ΠΈΠ½Π° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Ο β ΡΡΠΎ ΡΠΈΡΠ»ΠΎ Β«ΠΏΠΈΒ», ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠ°. ΠΠ½Π° ΡΠ°Π²Π½Π° ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ Π΄Π»ΠΈΠ½Ρ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΊ Π΄Π»ΠΈΠ½Π΅ Π΅Π΅ Π΄ΠΈΠ°ΠΌΠ΅ΡΡΠ°. ΠΡΠ΅Π²Π½Π΅Π΅ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ ΡΠΈΡΠ»Π° Β«ΠΏΠΈΒ» β Π»ΡΠ΄ΠΎΠ»ΡΡΠΎΠ²ΠΎ ΡΠΈΡΠ»ΠΎ. ΠΡΠΎ ΡΠΈΡΠ»ΠΎ ΠΈΡΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎ, Π΅Π³ΠΎ Π΄Π΅ΡΡΡΠΈΡΠ½ΠΎΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΡΠ»Π΅ ΡΠΎΡΠΊΠΈ Π½ΠΈΠΊΠΎΠ³Π΄Π° Π½Π΅ Π·Π°ΠΊΠ°Π½ΡΠΈΠ²Π°Π΅ΡΡΡ. Ο = 3.141 592 653 589 793 238 462 643 383 279 502 ΠΠ»Ρ ΡΠ΄ΠΎΠ±ΡΡΠ²Π° Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ ΠΎΠ±ΡΡΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ 3.14 R β ΡΡΠΎ ΡΠ°Π΄ΠΈΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ D β ΠΠΈΠ°ΠΌΠ΅ΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΡΠ°ΠΊ, ΡΡΠΎΠ±Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΊΡΡΠ³Π°, Π½Π°Π΄ΠΎ Π½Π°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠ°Π΄ΠΈΡΡΠ° ΠΈ 2Ο. ΠΡΠ»ΠΈ Π² Π·Π°Π΄Π°ΡΠ΅ ΡΠΊΠ°Π·Π°Π½ Π΄ΠΈΠ°ΠΌΠ΅ΡΡ, ΡΠΎ ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΏΠ΅ΡΠ΅Π΄ Π½Π°ΠΌΠΈ ΠΊΡΡΠ³ Ρ ΡΠ°Π΄ΠΈΡΡΠΎΠΌ 3 ΡΠΌ. ΠΠ°ΠΉΠ΄Π΅ΠΌ Π΅Π³ΠΎ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ. ΠΡΠ»ΠΈΡΠΈΠ΅ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΠΎΡ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈΠΠ»ΠΎΡΠ°Π΄Ρ β ΡΡΠΎ ΡΠ°Π·ΠΌΠ΅Ρ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠΈ ΡΠΈΠ³ΡΡΡ, Π° ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ β ΡΡΠΎ ΡΡΠΌΠΌΠ° Π΅Π΅ Π³ΡΠ°Π½ΠΈΡ. ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡΠΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠΌ ΠΏΡΠΈΠ½ΡΡΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠ΅ΡΡΡΠ΅Ρ ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ, Ρ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΠ°Π²Π½Ρ Π²ΡΠ΅ ΡΠ³Π»Ρ. ΠΠ½ΠΈ ΡΠ°ΠΊΠΆΠ΅ ΡΠ²Π»ΡΡΡΡΡ ΠΏΡΡΠΌΡΠΌΠΈ ΠΈ ΡΠΎΡΡΠ°Π²Π»ΡΡΡ 90Β°. ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ β ΡΡΠΎ Π΄Π»ΠΈΠ½Π° Π²ΡΠ΅Ρ ΡΡΠΎΡΠΎΠ½ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°. ΠΠ±ΡΠ΅ΠΏΡΠΈΠ½ΡΡΠΎΠ΅ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΠ΅ β Π·Π°Π³Π»Π°Π²Π½Π°Ρ Π»Π°ΡΠΈΠ½ΡΠΊΠ°Ρ Π±ΡΠΊΠ²Π° P. ΠΠΎΠ΄ Β«PΒ» ΡΠ΄ΠΎΠ±Π½ΠΎ ΠΏΠΈΡΠ°ΡΡ ΠΌΠ°Π»Π΅Π½ΡΠΊΠΈΠΌΠΈ Π±ΡΠΊΠ²Π°ΠΌΠΈ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ ΡΠΈΠ³ΡΡΡ, ΡΡΠΎΠ±Ρ Π½Π΅ Π·Π°ΠΏΡΡΠ°ΡΡΡΡ Π² Π·Π°Π΄Π°ΡΠ°Ρ ΠΏΠΎ Ρ ΠΎΠ΄Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ. ΠΡΠ»ΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΠΏΠ΅ΡΠ΅Π΄Π°Π½Ρ Π² ΡΠ°Π·Π½ΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ°Ρ Π΄Π»ΠΈΠ½Ρ, ΠΌΡ Π½Π΅ ΡΠΌΠΎΠΆΠ΅ΠΌ ΡΠ·Π½Π°ΡΡ ΠΊΠ°ΠΊΠ°Ρ ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΡΠΈΠ³ΡΡΡ ΠΏΠΎΠ»ΡΡΠΈΡΡΡ. ΠΠΎΡΡΠΎΠΌΡ Π΄Π»Ρ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΠ΅ΡΠ΅Π²Π΅ΡΡΠΈ Π²ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΊ ΠΎΠ΄Π½ΠΎΠΉ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ. Π ΡΠ΅ΠΌ ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ: Π€ΠΎΡΠΌΡΠ»Π° Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°Π‘ΠΏΠΎΡΠΎΠ± Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ Π½ΡΠΆΠ½ΠΎ Π²ΡΠ±ΡΠ°ΡΡ, ΠΎΡΡΠ°Π»ΠΊΠΈΠ²Π°ΡΡΡ ΠΎΡ ΠΈΡΡ ΠΎΠ΄Π½ΡΡ Π΄Π°Π½Π½ΡΡ . ΠΠ°Π»Π΅Π΅ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠ΅ΡΡΡΠ΅ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΡΠΌΡΠ»Ρ. ΠΠΎΠ³Π΄Π° ΠΈΠ·Π²Π΅ΡΡΠ½Ρ Π²ΡΠ΅ ΠΈΠ»ΠΈ Π΄Π²Π΅ ΡΠΎΡΠ΅Π΄Π½ΠΈΠ΅ ΡΡΠΎΡΠΎΠ½ΡP = a + b + c + d, Π³Π΄Π΅ a, b, c, d β ΡΡΠΎΡΠΎΠ½Ρ. ΠΠΎΠ³Π΄Π° ΠΈΠ·Π²Π΅ΡΡΠ½Π° Π»ΡΠ±Π°Ρ ΡΡΠΎΡΠΎΠ½Π° ΠΈ ΠΏΠ»ΠΎΡΠ°Π΄ΡP = 2 * (a + S : a), Π³Π΄Π΅ a β ΡΡΠΎΡΠΎΠ½Π°, S β ΠΏΠ»ΠΎΡΠ°Π΄Ρ. ΠΠ»ΠΎΡΠ°Π΄Ρ β ΡΡΠΎ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡ Π²Π½ΡΡΡΠΈ Π·Π°ΠΌΠΊΠ½ΡΡΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΠ³ΡΡΡ. ΠΠΎΠ³Π΄Π° ΠΈΠ·Π²Π΅ΡΡΠ½Π° Π»ΡΠ±Π°Ρ ΡΡΠΎΡΠΎΠ½Π° ΠΈ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡΠΠΈΠ°Π³ΠΎΠ½Π°Π»Ρ β ΡΡΠΎ ΠΎΡΡΠ΅Π·ΠΎΠΊ, ΠΊΠΎΡΠΎΡΡΠΉ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΠ΅Ρ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΠΈΠ³ΡΡΡ. ΠΠΎΠ³Π΄Π° ΠΈΠ·Π²Π΅ΡΡΠ½Π° ΠΎΠ΄Π½Π° Π»ΡΠ±Π°Ρ ΡΡΠΎΡΠΎΠ½Π° ΠΈ ΡΠ°Π΄ΠΈΡΡ ΠΎΠΏΠΈΡΠ°Π½Π½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈΠ Π°Π΄ΠΈΡΡ β ΠΎΡΡΠ΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΠΈΠΉ ΡΠ΅Π½ΡΡ ΠΈ Π»ΡΠ±ΡΡ ΡΠΎΡΠΊΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ. Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°ΡΠ ΡΠ΅ΠΏΠ΅ΡΡ ΠΏΡΠ°ΠΊΡΠΈΠΊΠΎΠ²Π°ΡΡΡΡ! 1. ΠΠ΄Π½Π° ΡΡΠΎΡΠΎΠ½Π° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° 9 ΡΠΌ, Π° Π΄ΡΡΠ³Π°Ρ Π½Π° 11 ΡΠΌ Π΄Π»ΠΈΠ½Π½Π΅Π΅. ΠΠ°ΠΊ ΡΠ·Π½Π°ΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ?2. ΠΠ»ΠΎΡΠ°Π΄Ρ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 60 ΠΌΒ², ΡΠΈΡΠΈΠ½Π° ΡΠ°Π²Π½Π° 15 ΠΌ. Π§Π΅ΠΌΡ ΡΠ°Π²Π΅Π½ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠΈΠ³ΡΡΡ?Π Π΅ΡΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΎΡ ΡΠ°ΠΊ: ΠΡΠ²Π΅Ρ β ΡΠ°ΠΊΠΎΠΉ ΠΆΠ΅, 38 ΠΌ. 3. ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, Π΅ΡΠ»ΠΈ Π΅Π³ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Ρ Π² Π΄Π²Π° ΡΠ°Π·Π° Π±ΠΎΠ»ΡΡΠ΅ Π΄Π»ΠΈΠ½Ρ ΡΠ°Π²Π½ΠΎΠΉ 8 ΡΠΌ?ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΈ ΠΏΠ»ΠΎΡΠ°Π΄ΡΠ‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΌΠ½ΠΎΠ³ΠΎ ΠΏΠ»ΠΎΡΠΊΠΈΡ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΈΠ³ΡΡ: ΡΠΎΡΠΊΠ°, Π»ΠΈΠ½ΠΈΡ (ΠΏΡΡΠΌΠ°Ρ ΠΈΠ»ΠΈ ΠΊΡΠΈΠ²Π°Ρ), ΠΎΡΡΠ΅Π·ΠΎΠΊ, ΡΠ³ΠΎΠ», Π»ΠΎΠΌΠ°Π½Π°Ρ ΠΈ Ρ. Π΄.: ΠΡΠ»ΠΈ Π²Π½ΠΈΠΌΠ°ΡΠ΅Π»ΡΠ½ΠΎ ΠΏΠΎΡΠΌΠΎΡΡΠ΅ΡΡ Π½Π° Π²ΡΠ΅ ΡΡΠΈ ΡΠΈΠ³ΡΡΡ, ΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠ΄Π΅Π»ΠΈΡΡ Π΄Π²Π΅ ΠΈΠ· Π½ΠΈΡ , ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Ρ Π·Π°ΠΌΠΊΠ½ΡΡΡΠΌΠΈ Π»ΠΈΠ½ΠΈΡΠΌΠΈ (ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ ΠΈ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ). ΠΡΠΈ ΡΠΈΠ³ΡΡΡ ΠΈΠΌΠ΅ΡΡ ΡΠ²ΠΎΠ΅Π³ΠΎ ΡΠΎΠ΄Π° Π³ΡΠ°Π½ΠΈΡΡ, ΠΎΡΠ΄Π΅Π»ΡΡΡΡΡ ΡΠΎ ΡΡΠΎ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π²Π½ΡΡΡΠΈ, ΠΎΡ ΡΠΎΠ³ΠΎ ΡΡΠΎ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΡΠ½Π°ΡΡΠΆΠΈ. Π’ΠΎ Π΅ΡΡΡ Π³ΡΠ°Π½ΠΈΡΠ° Π΄Π΅Π»ΠΈΡ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡ Π½Π° Π΄Π²Π΅ ΡΠ°ΡΡΠΈ: Π²Π½ΡΡΡΠ΅Π½Π½ΡΡ ΠΈ Π²Π½Π΅ΡΠ½ΡΡ ΠΎΠ±Π»Π°ΡΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΈΠ³ΡΡΡ, ΠΊ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΎΠ½Π° ΠΎΡΠ½ΠΎΡΠΈΡΡΡ: ΠΠ΅ΡΠΈΠΌΠ΅ΡΡΠΠ΅ΡΠΈΠΌΠ΅ΡΡ β ΡΡΠΎ Π·Π°ΠΌΠΊΠ½ΡΡΠ°Ρ Π³ΡΠ°Π½ΠΈΡΠ° ΠΏΠ»ΠΎΡΠΊΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΠ³ΡΡΡ, ΠΎΡΠ΄Π΅Π»ΡΡΡΠ°Ρ Π΅Ρ Π²Π½ΡΡΡΠ΅Π½Π½ΡΡ ΠΎΠ±Π»Π°ΡΡΡ ΠΎΡ Π²Π½Π΅ΡΠ½Π΅ΠΉ. ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ Π΅ΡΡΡ Ρ Π»ΡΠ±ΠΎΠΉ Π·Π°ΠΌΠΊΠ½ΡΡΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΠ³ΡΡΡ: ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΡ Π²ΡΠ΄Π΅Π»Π΅Π½Ρ ΠΊΡΠ°ΡΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠ΅ΠΉ. ΠΠ±ΡΠ°ΡΠΈΡΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, ΡΡΠΎ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΠ°ΡΡΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ Π΄Π»ΠΈΠ½ΠΎΠΉ. ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ Π² Π΅Π΄ΠΈΠ½ΠΈΡΠ°Ρ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π΄Π»ΠΈΠ½Ρ: ΠΌΠΌ, ΡΠΌ, Π΄ΠΌ, ΠΌ, ΠΊΠΌ. Π£ Π²ΡΠ΅Ρ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ² Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΡΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΊ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ Π΄Π»ΠΈΠ½ Π²ΡΠ΅Ρ ΡΡΠΎΡΠΎΠ½, ΡΠΎ Π΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° Π²ΡΠ΅Π³Π΄Π° ΡΠ°Π²Π΅Π½ ΡΡΠΌΠΌΠ΅ Π΄Π»ΠΈΠ½ Π΅Π³ΠΎ ΡΡΠΎΡΠΎΠ½. ΠΡΠΈ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΈ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠ°ΡΡΠΎ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ Π±ΠΎΠ»ΡΡΠΎΠΉ Π»Π°ΡΠΈΠ½ΡΠΊΠΎΠΉ Π±ΡΠΊΠ²ΠΎΠΉ P : ΠΠ»ΠΎΡΠ°Π΄ΡΠΠ»ΠΎΡΠ°Π΄Ρ β ΡΡΠΎ ΡΠ°ΡΡΡ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ, Π·Π°Π½ΠΈΠΌΠ°Π΅ΠΌΠ°Ρ Π·Π°ΠΌΠΊΠ½ΡΡΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΠ³ΡΡΠΎΠΉ. ΠΡΠ±Π°Ρ ΠΏΠ»ΠΎΡΠΊΠ°Ρ Π·Π°ΠΌΠΊΠ½ΡΡΠ°Ρ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΈΠ³ΡΡΠ° ΠΈΠΌΠ΅Π΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ½Π½ΡΡ ΠΏΠ»ΠΎΡΠ°Π΄Ρ. ΠΠ° ΡΠ΅ΡΡΠ΅ΠΆΠ°Ρ ΠΏΠ»ΠΎΡΠ°Π΄ΡΡ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΈΠ³ΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ Π²Π½ΡΡΡΠ΅Π½Π½ΡΡ ΠΎΠ±Π»Π°ΡΡΡ, ΡΠΎ Π΅ΡΡΡ ΡΠ° ΡΠ°ΡΡΡ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π²Π½ΡΡΡΠΈ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ°. ΠΠ·ΠΌΠ΅ΡΠΈΡΡ ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΡΠΈΠ³ΡΡΡ β Π·Π½Π°ΡΠΈΡ Π½Π°ΠΉΡΠΈ, ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ°Π· Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠΈΠ³ΡΡΠ΅ ΠΏΠΎΠΌΠ΅ΡΠ°Π΅ΡΡΡ Π΄ΡΡΠ³Π°Ρ ΡΠΈΠ³ΡΡΠ°, ΠΏΡΠΈΠ½ΡΡΠ°Ρ Π·Π° Π΅Π΄ΠΈΠ½ΠΈΡΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ. ΠΠ±ΡΡΠ½ΠΎ Π·Π° Π΅Π΄ΠΈΠ½ΠΈΡΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅ΡΡΡ ΠΊΠ²Π°Π΄ΡΠ°Ρ, Ρ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΡΠΎΡΠΎΠ½Π° ΡΠ°Π²Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΠ΅ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π΄Π»ΠΈΠ½Ρ: ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅ΡΡΡ, ΡΠ°Π½ΡΠΈΠΌΠ΅ΡΡΡ, ΠΌΠ΅ΡΡΡ ΠΈ Ρ. Π΄. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΡΠ½ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΠ°Π½ΡΠΈΠΌΠ΅ΡΡ. ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΡΠ°Π½ΡΠΈΠΌΠ΅ΡΡ β ΠΊΠ²Π°Π΄ΡΠ°Ρ, Ρ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΊΠ°ΠΆΠ΄Π°Ρ ΡΡΠΎΡΠΎΠ½Π° ΠΈΠΌΠ΅Π΅Ρ Π΄Π»ΠΈΠ½Ρ 1 ΡΠΌ:
|